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Abstract. The interplay between the quantum interferences responsible for one particle localization over
a length L1, and the partial dephasing induced by a local interaction of strength U with another particle
leading to partial delocalization over a length L2 > L1, is illustrated by a study of the motion of two
particles put close to each other at the initial time. Localization is reached in two steps. First, before the
time t1 necessary to propagate over L1, the interaction slows down the ballistic motion. On the contrary,
after t1 the interaction favors a very slow delocalization, characterized by a log(t) spreading of the center of
mass, until L2 is reached. This slow motion is related to the absence of quantum chaos in this one dimen-
sional model, the interaction being only able to induce weaker chaos with critical spectral statistics. Under
appropriate initial conditions, the motion remains invariant under the duality transformation mapping the
behavior at small U onto the behavior at large U .

PACS. 71.10.-w Theories and models of many electron systems – 71.30.+h Metal-insulator transitions
and other electronic transitions – 73.20.Jc Delocalization processes

1 Introduction

In this third work of a series [1–3] concerning two interact-
ing particles (TIP) in a one dimensional random lattice,
we use the time dependent Schrödinger equation to de-
scribe the competition between the one particle quantum
interferences induced by the random potential leading to
localization, and the mutual dephasing induced by a lo-
cal interaction and leading to partial delocalization. At
the initial time, a wave packet representing two particles
in two neighboring sites is constructed in the middle of
a disordered chain of size L. A repulsive on site inter-
action of strength U is considered. The particles are as-
sumed to be two electrons with opposite spins, the initial
wave function is symmetric and remains symmetric dur-
ing the quantum motion. We study the short times where
the particles visit scales small compared to the one par-
ticle localization length L1 till the long times where the
spreading of the center of mass saturates at the TIP lo-
calization length L2 � L1. For this, we use an efficient
automaton-like algorithm adapted to discrete scalar wave
propagation in a system of finite size L. We restrict the
study to strong localization, such that the quantum mo-
tion is the same when the size increases from L = 512
to L = 1024 and t → ∞. This guarantees that our con-
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clusions are not biased by finite size effects coming from
successive boundary reflexions. The price to pay for this
is to consider relatively small values for L1 and L2.

The TIP-dynamics is characterized by two times t1
and t2, where a scale of order of L1 and L2 is respectively
explored. Between t1 and t2, we find that the spreading
of the center of mass is extremely slow. To give an or-
der of magnitude, L1 ≈ 16 can be quickly reached after
t1 ≈ 100 (in units of time) while a time t2 ≈ 104 is nec-
essary to reach only L2 ≈ 2L1. In this regime of interac-
tion assisted propagation, we find that the center of mass
spreads with a log(t)-law, quite different from a previously
assumed diffusion law. This is consistent with the obser-
vation [2] that the interaction can never drive the TIP sys-
tem in one dimension to full quantum chaos with Wigner-
Dyson spectral statistics. Only a weak critical chaos can
be established, where the spectral fluctuations are statis-
tically similar to those characterizing [4] different critical
one particle spectra (3d Anderson model at the mobility
edge [5] or certain pseudo-integrable billiards). Another
important phenomenon illustrated by this study is the in-
version of the effect of the interaction when the ballistic
motion (t < t1) becomes sub-diffusive (t1 < t < t2): first
U defavors the ballistic propagation before having an op-
posite delocalizing effect.

The paper is organized as follows. The model and the
used algorithm are introduced (Sect. 2). Then a series
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of useful results for understanding the complex features
of TIP dynamics (Sect. 3) are shortly summarized. Illus-
trations of the TIP delocalization phenomenon are given
when t→∞. The role of the finite size effects are studied
for L = 512, and the values of L1 and L2 where they can be
neglected are estimated (Sect. 4). In the remaining part,
we study how is reached this long time limit, after two suc-
cessive regimes of the quantum motion. First, a ballistic
regime (t < t1) is studied where U defavors propagation
(Sect. 5). The dependence of the TIP dynamics on the
chosen initial wave packet is illustrated. We consider both
two particles put at t = 0 on the same site (energy ≈ U)
and on two neighboring sites (energy ≈ 0). Following the
initial condition, the dynamics probes two different sets
of states in the large U -limit: molecular states of energy
≈ U and hard core boson states of energy ≈ 0, as dis-
cussed in reference [2]. The duality transformation map-
ping the behavior at small U onto the behavior at large
U is illustrated for appropriate initial conditions. A study
of t1 follows (Sect. 6) before describing the sub-diffusive
regime where interaction favors a slow TIP propagation
(t1 < t < t2: Sect. 7). The log(t) spreading of the center
of mass is related to the long life-time observed in refer-
ence [1] for the free boson states (TIP states for U = 0).
The relation between the observed very slow delocaliza-
tion, the multifractal measure [1] characterizing the in-
teraction induced hopping terms coupling the free boson
states, and the critical weak chaos observed in reference [2]
are discussed.

2 Model and numerical algorithm

To study the motion of two electrons with opposite spins
in a one dimensional Anderson tight binding model with
on site interaction, we have to numerically solve the dis-
cretized TIP Schrödinger equation:

i

2ε
(|ψ(t+ ε)〉 − |ψ(t− ε)〉) = H|ψ(t)〉, (1)

where H = H0 ⊗ 1 + 1⊗H0 +Hint. H0 is the one particle
tight binding Anderson Hamiltonian:

H0 =
L−1∑
n=1

(|n〉〈n+ 1|+ |n+ 1〉〈n|) +
L∑
n=1

Vn|n〉〈n|.

L is the system size and Vn are independent random vari-
ables, uniformly distributed inside the interval [−W,W ].
The ket |n〉 stands for the electronic orbital located at the
site n of the one dimensional lattice. The eigenstates |α〉
of H0 are localized on a length L1 (with L1 ≈ 24/W 2 at
the band center). Hint is the on site interaction:

Hint = U

L∑
n=1

|n〉 ⊗ |n〉〈n| ⊗ 〈n|.

In what follows, all the lengths are given in lattice spacing
units and all the energies in units of 1/ε. The times are

then expressed in the corresponding units (ε). The sites
are labelled from −L/2 to +L/2, such that the site n = 0
is located in the middle of the chain. The initial condition
corresponds to

ψn1,n2(0) = ψn1,n2(ε) =
1
√

2
(δn1,0δn2,ρ0 + δn2,0δn1,ρ0),

where 〈n1n2|ψ(t)〉 = ψn1,n2(t).
When ε is small enough, the discrete time equation (1)

has the same physical content as its continuous version.
To solve equation (1), we use an automaton-like algo-

rithm [6], which relies on a formulation of discrete scalar
wave propagation in an arbitrary inhomogeneous medium
by the use of elementary processes obeying a discrete Huy-
gens’ principle and satisfying fundamental symmetries, as
described in reference [6]. Our algorithm avoids the direct
discretisation procedure and incorporates the symmetries
underlying the Anderson model at the lowest stage of the
construction. As a consequence the algorithm preserves
the unitarity of the dynamics, insuring the normalization
of the wavefunction at all times,

∑
n1,n2

|ψn1,n2(t)|2 = 1,

up to a small correction of order ε2. Besides, the construc-
tion is optimized for implementing the algorithm on mas-
sively parallel machines. The numerical simulations have
been carried for a time step ε = 0.05. The simulations were
performed on a 16K processor Connexion Machine. Given
a value of the disorder strength W and a disorder config-
uration, the wavefunction has been calculated for chains
of length as large as L = 1024 and up to a maximum of
106 units of time.

3 Review of some useful results

Since the two body quantum motion is quite complex, it
is useful to have in mind a few previous results that we
shortly summarize.

3.1 Non linear σ model

The first analytical descriptions [7,8] of the TIP system
are mainly based on simplified random matrix Hamiltoni-
ans with independent Gaussian entries. The purpose was
first to explain the new phenomenon of pair propagation
at scales larger than L1 and the pair localization at a scale
L2 � L1. In reference [8], from such an effective random
matrix Hamiltonian, a supersymmetric nonlinear σ model
was derived, closely related with the one found by Efetov
for non interacting electrons in disordered metals. The ap-
proach was mainly developed for an arbitrary dimension
d. We recall the conclusions for a strictly one dimensional
model (d = 1).

Let us denote by |α〉 a one particle state located near
the site nα, |αβ〉 the symmetrized product states forming
the eigenbasis of the TIP Hamiltonian when U = 0. Since
they are the symmetric eigenstates without interaction,
we call them “free boson states” as in references [2,3].
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We denote by Γαβ their inverse lifetime when the inter-
action is switched on. The TIP supersymmetric σ model
gives Γαβ in agreement with the Fermi golden rule:

Γαβ ∼ 2π|〈αβ|Hint|αβ〉|
2νeff ≈ Γ1f

(
|nα − nβ |

L1

)
, (2)

where

Γ1 ≈ 2π
U2

BL1
· (3)

B is the kinetic energy (band width), 〈αβ|Hint|γδ〉 the
typical interaction matrix element between two free boson
states and νeff the density of free boson states |γδ〉 cou-
pled to |αβ〉 by the interaction. f(x) ≈ 1 when x < 1, i.e.
when the typical distance |nα− nβ | between the localized
states |α〉 and |β〉 is smaller than L1 and f(x) ≈ exp(−x)
when |nα−nβ| > L1. The lifetime of |αβ〉 depends on the
spatial overlap between |α〉 and |β〉. Localized at a dis-
tance |nα − nβ | large compared to L1, the two particles
have an exponentially small probability to be on the same
site and to feel the on site interaction. The correspond-
ing lifetime is exponentially large. For |α〉 and |β〉 local-
ized inside the same localization domain of size L1, the
lifetime Γ−1

1 defines an important characteristic time. In
reference [8], Γ−1

1 and L1 are respectively the smallest re-
solved time and length scales. The main assumption of the
approach, contained in the effective random matrix Hamil-
tonian from which the σ model is derived, is that the one
particle states are essentially ergodic, chaotic and random
inside their localization domain. This is a simplification of
the one body dynamics inside L1, which amounts to as-
sume for the single particle a “zero-dimensional” dynamics

inside L1. For L = L1, one gets 〈αβ|Hint|γδ〉 ≈ ±U/L
3/2
1

and νeff ≈ L2
1/B near the band center, and eventually the

above expression for Γ1. As far as the dynamics are con-
cerned, the main conclusions of reference [8] are as follows.
For t > Γ−1

1 , the time where the pair size ρ(t) is roughly
equal to |nα − nβ | can be estimated from the lifetime of
the free boson state |αβ〉 with |nα−nβ| ≈ ρ(t). This gives

ρ(t) ∝ L1(1 + log(Γ1t)). (4)

At the same time, the center of mass R(t) exhibit a dif-

fusive motion R(t) =
√
D2(t)t, with a slightly time de-

pendent diffusion constantD2(t) ≈ (U2/B)(L1/ log(Γ1t)).
This small time dependence of D2(t) comes from the fact
that the frequency of the collisions between the two parti-
cles decreases as the pair size grows. This diffusion stops
when R(t) ≈ L2 ≈ (U/B)2L2

1, where TIP localization oc-
curs.

3.2 Level curvature

Useful, though indirect information for the TIP propaga-
tion at scales L ≤ L1 can be found in reference [9] where
the sensitivity of the TIP levels EA to a change of bound-
ary conditions is given. Detailed numerical calculations

confirming the predictions of reference [9] are given in the
last paper of this series [3]. For a ring threaded by an AB-

flux Φ, the TIP curvature C2(E) ≡
∑
A
∂2EA
∂Φ2 δ(E−EA) is

given by the expression:

C2(E) ≈ g1
∆1

∆2
− (g1 − 1)g2(U)

∆1

B
· (5)

g1 and ∆1 are respectively the one particle conductance
and mean level spacing. g2(L,U) can be understood as
an interaction-assisted TIP conductance [10] of order
Γαβ(L,U)/∆2(L), where ∆2(L) is the spacing of the free
boson levels directly coupled by the interaction. The above
expression implies that the effect of U strongly depends
on L. When L� L1, g1 − 1 ≈ g1, and C2 is mainly given
by a kinetic one particle term g1∆1/∆2 reduced by a small
correction proportional to g2(L,U). This means that for
L � L1 (ballistic one particle regime) the easy propa-
gation due to kinetic terms is not yet strongly affected
by the one particle quantum interference. In this case,
the presence of the second particle defavors the propaga-
tion of the first and the interaction slightly reduces C2, as
confirmed in reference [3]. When L ≥ L1, the one parti-
cle transport is suppressed by the quantum interferences
(Anderson localization) and the term proportional to U
in C2 changes its sign, since g1 − 1 ≈ −1 up to exponen-
tially small corrections. Thus, TIP transport is favored by
the interaction, the presence of the second particle leading
to a decoherence of the localizing quantum interferences
of the first. C2 is of order g2 for the few TIP states re-
organized by the interaction when L� L1. From the be-
havior of the TIP curvature, one should expect a change
of the role of U for the TIP quantum motion as a function
of time: starting from a localized wave packet, the explo-
ration on a scale L ≤ L1 for t < t1 should require a longer
time with interaction than without. But without interac-
tion, the exploration of scales L � L1 is forbidden by
Anderson localization, while it becomes possible in
the presence of interaction. An important issue is
then to know what is the time scale t2 − t1
required for this exploration, before the pair it-
self gets localized when t ≈ t2. According to
reference [8], t2 − t1 =

√
L2/D2(t2 − t1). However, one

should have in mind some further results obtained for
strictly on site interaction and strictly one dimension.

3.3 Multifractality

The interaction matrix elements

〈αβ|Hint|γδ〉 = 2U
L∑
n=1

Ψ∗α(n)Ψ∗β (n)Ψγ(n)Ψδ(n),

(with Ψα(n) = 〈n|α〉) defines a measure of the free bo-
son states |γδ〉 coupled to a given |αβ〉. It was shown
in reference [1] that this measure is multifractal. In con-
trast to earlier assumptions, the density νeff(L) of free bo-
son states |γδ〉 effectively coupled to |αβ〉 is much weaker
than the total density ν2(L) of free boson states. This is
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not surprizing when there is no disorder: only free boson
states of same total momentum are directly coupled, and
νeff = ν1 ∝ L and not ν2 ∝ L2. When disorder is switched
on, the momentum is no longer a good quantum number,
and one gets ν1 < νeff < ν2. More precisely, if one wants
to estimate Γαβ using the Fermi golden rule, one needs
the effective density of states |γδ〉 coupled by the second
moment (q = 2) of the interaction matrix elements. The
measure in the TIP Hilbert space of the support of this
set of states is neither d = 1 (as for the clean case) nor
d = 2 (as for the chaotic d = 0 case), but a fractal di-
mension 1 < f(α(q = 2)) ≈ 1.75 < 2. This gives a re-
duced effective density νeff ∝ Lf(α(q=2)). The measure is
multifractal, since this density depends on the considered
qth moment of the coupling term. A direct implication of
this multifractal character is that the lifetime of the free
boson states is longer than Γ1 for L ≈ L1. One should
expect that the diffusion law obtained ignoring multifrac-
tality underestimates the time t2 − t1 for the particles to
propagate between L1 and L2. The multifractality of the
set of directly coupled free boson states should mean a
very slow interaction induced delocalization.

3.4 Weak critical chaos

The TIP spectral fluctuations also lead us to expect very
slow dynamics before localization. For a given L, the TIP
spectrum has Poisson statistics in the limits where either
the disorder W or the interaction U are too weak or too
strong. In the limit of the clean system (W = 0), this is
due to the fact that the effective density of coupled free
boson states is ν1 ∝ L � ν2 ∝ L2. For W � 1, one has
L1 � L and the small part of TIP levels being reorganized
by U is totally hidden behind the main part of the non
reorganized spectrum, corresponding to free boson states
with |nα − nβ| ≥ L1 and which remain eigenstates when
U is switched. For U � 1, the TIP states are basically
the free boson states of energy εα + εβ, i.e. almost un-
correlated TIP-levels. For U � 1, the levels have again
an energy εα + εβ (duality property explained in the next
paragraph). In the plane (U,W ), inside those mentioned
Poisson limits, in a domain centered around L ≈ L1 and
U ≈ 1, the TIP spectrum becomes more rigid, though less
rigid than a Wigner-Dyson spectrum associated to quan-
tum chaos. The spectral rigidity saturates [2] to an inter-
mediate rigidity between Poisson and Wigner-Dyson. This
rigidity is however not arbitrary, but has a universal char-
acter shared by many one particle “critical” systems [4],
such as the Anderson model at the mobility edge, a mixed
system where integrable and chaotic trajectories coexist
or a pseudo-integrable billiard where all trajectories be-
long to a surface of genus larger than one. By the term
“weak critical chaos”, we mean that under certain circum-
stances (U ≈ 1 and L ≈ L1), the TIP system belongs to
the same critical universality class than those one parti-
cle systems, at least as far as the spectral statistics are
concerned. The interaction can never drive the TIP sys-
tem towards a stronger chaos, i.e., towards full quantum
chaos with Wigner-Dyson statistics.

3.5 Duality

The Hamiltonian without interaction is diagonal in the
basis of the free boson states. As pointed out by
Ponomarev and Silvestrov [11], there is an eigenbasis ap-
propriate when U →∞, having the same energies εα + εβ
than the free boson states. Indeed, when U →∞, one has
just to solve a non interacting problem with new bound-
ary conditions. Since particles cannot be on the same site,
we define L(L− 1)/2 hard core boson states |hc〉 of com-
ponents 〈n1n2|hc〉 given by

1
√

2
[Ψα(n2)Ψβ(n1)− Ψα(n1)Ψβ(n2)]

n2 − n1

|n2 − n1|
· (6)

A hard core boson state is just a 2×2 antisymmetric Slater
determinant resymmetrized by the factor (n2− n1)/|n2−
n1|. To complete this basis of the symmetric TIP Hilbert
space spanned by L(L+ 1)/2 states, we add L molecular
states |nn〉 of energy 2Vn + U , Vn being the random po-
tential of the nth site. This set of molecular states forms
a small sub-band which goes to very large energies when
U →∞. For the main sub-band of hard core bosons states,
centered around E = 0 as the free boson states, there is
a duality relation [2,11] U ↔ A/U , mapping the behav-

ior at small U onto the behavior at large U . A =
√

24 for
E = 0. One finds that the coupling terms between the free
boson states are given by

2U
∑
n

Ψ∗α(n)Ψ∗β (n)Ψγ(n)Ψδ(n),

while the coupling terms between the hard core boson
states are a sum of terms like∑

n,n′,n′′

Ψ∗α(n)Ψ∗β(n)Ψγ(n′)Ψδ(n
′′)

U + 2Vn −E
,

with various combinations of n′, n′′ = n ± 1. The duality
is obtained neglecting the difference between n and n′ and
assuming that U + 2Vn − E ≈ U . This gives a strong de-
pendence of the TIP dynamics on the initial wave packet.
For large U , the (|hc〉 ∪ |nn〉) form an eigenbasis, the mo-
tion of a wave packet located at the sites 0 and ρ0 for t = 0
is given by the time dependent wave function:

ψn1,n2(t) =
∑

S=(hc,nn)

C∗n1,n2,SC0,ρ0,Se−iESt,

where the summation S goes over the states |hc〉 and |nn〉
and Cn1,n2,S = 〈n1, n2|S〉. For two particles put on the
same site n at the beginning (i.e. with an energy U +
2Vn), we mainly probe the molecular state |nn〉 when U
is large: the two particles stay on the same site for a very
large time. For smaller values of U , this initial wave packet
starts to probe the molecular state |nn〉 before decaying
onto the neighboring hard core bosons states of energy of
order U . To eliminate the time motion associated with the
molecular states and to see the time motion associated to
the hard core boson states, which only exhibit the duality
property, one has to start with two particles put close to
each other on two different sites 0 and ρ0.
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4 Asymptotic TIP localization and finite size
effects

The role of the repulsive interaction U on the quantum
motion is shown in Figures 1 and 2, illustrating the TIP
delocalization effect [7] in a strongly disordered chain for
U = 1. This effect is a consequence of the mixing by the
interaction of free boson states close in energy, delocalizing
the TIP system in the free boson basis. Since the one body
states are localized, this delocalization in the free boson
basis also means delocalization in real space. The initial
condition corresponds to ρ0 = 1. We have taken the site
potentials V0 = V1 = 0, in order to benefit by the large
density of TIP states for E ≈ 0.

In Figures 1 and 2, the rainbow color code indicates
on a linear scale the small values of |ψn1,n2(t = 5× 104)|2

in red up to the large values in violet. In the upper
Figure 1, one can see how the two particles are confined
by the random potential without interaction, in a local-
ization domain which is very quickly reached (typically
for t ≈ 200). In the lower Figure 1, U = 1 and the cen-
ter of mass becomes delocalized as sketched in the upper
Figure 2. TIP localization after ensemble averaging is
shown on the lower Figure 2 for U = 1. This TIP ellip-
soidal localization domain is reached and stops to spread
after a considerably larger time (typically for t ≈ 5×104).
For a given sample, one can see that |ψn1,n2(t = 5×104)|2

does not homogeneously fill the ellipse, and is character-
ized by large fluctuations, mainly near the border of the
ellipse. These fluctuations are somewhat similar to those
characterizing the interaction matrix elements coupling
the free boson states (see Fig. 1 of Ref. [1]). As we have
checked, ψn1,n2(t) develop an anisotropic multifractal be-
havior when the interaction assisted propagation begins
to dominate the dynamics.

To study the spreading R(t) of the center of mass and
the size ρ(t) of the pair, we use the following functions:

R(t) =

(∑
n1,n2

|ψn1,n2(t)|2
(n1 − n̄1 + n2 − n̄2)2

2

)1/2

,

ρ(t) =

(∑
n1,n2

|ψn1,n2(t)|2
(n1 − n̄1 − n2 + n̄2)2

2

)1/2

,

where n̄1,2 =
∑
n1,n2

|ψn1,n2(t)|2n1,2. We have checked
that the disorder average of n̄1,2 does not depend on time.

Before going further, we first check that the localiza-
tion effects are strong enough so that the TIP motion
that we study corresponds to the dynamics of the infi-
nite chain, and not of a finite chain with boundary effects.
Indeed, for a too weak disorder, fast fronts of the wave
function could propagate [12] up to the boundaries and
be reflected. This will affect the long time behavior, as
the reflected waves enhance the localization of the center
of mass. The enhancement factor for R(t) would be under-
estimated. Since our numerical algorithm allows to study
systems of size up to L = 1024 for 106 steps of time, we
compare in Figure 3 the motion for L = 512 and L = 1024
and for L1 = 16 and L1 = 36.

Fig. 1. |ψn1,n2(t = 5 × 104)|2 for two particles put on sites 0
and ρ0 = 1 at t = 0. L = 512 and L1 = 16. Up: U = 0. Down:
U = 1.

For L1 = 16, R(t) saturates at the same value L2 ≈ 36
when the size L = 512 is doubled, while R(t) has strong
finite size effects for L1 = 36 above t ≈ 103 when L = 512.
The study of TIP delocalization in the infinite chain can
be investigated when L = 512 only for a large disorder,
where both L1 and L2 are relatively small. Since L2 is
reached after a very long time, our numerical method is
not convenient to study how L2 depends on L1 and U .
We just show in Figure 4 the probability density p(R) ≡∑
n1+n2=R |ψn1n2(t = 5×104)|2 for U = 0 and U = 1 when

L1 = 16. This proves that the center of mass is indeed
exponentially localized over a length L2 ≈ 2L1, without
finite size effect. For larger values of L1 we have seen larger
effects (R(U = 1)/R(U = 0) ≈ 3.5) at long times, but this
only gives a lower estimate for the enhancement factor
L2/L1, boundary effects being non negligible.
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R(t)

ρ (t)

n

n
2

1

Fig. 2. Up: scheme of the TIP delocalization effect:
|ψn1,n2(∞)|2 is concentrated in an ellipse corresponding to a
center of mass R delocalized by the interaction on a scale larger
than the pair size ρ. Down: same as in Figure 1 for U = 1,
L1 = 36 after having averaged over 20 samples.
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Fig. 3. Finite size effects for U = 1. R(t) for L1 = 16 and 36
for two sizes L = 512 and 1024.
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Fig. 4. TIP delocalization effect. Probability distribution
p(R(t = 5× 104)) for a single sample with L1 = 16, L = 1024,
U = 0 (dashed line) and U = 1 (thick line).

The different regimes of the quantum motion

We now study the intermediary time scales during which
the center of mass R(t) spreads, before the time t2 where
it saturates and TIP localization occurs. For U = 0, the
aspect ratio of |ψn1,n2(t)|2, defined by R(t)/ρ(t), remains
equal to one at all times, but for U 6= 0, the time evolution
of this ratio exhibits three regimes (Fig. 5), delimited by
two characteristic time scales t1 and t2. For t ≤ t1, the re-
pulsive interaction favors ρ(t) and defavors R(t). The ratio
R(t)/ρ(t) decreases. This is the ballistic regime character-
izing the length scales smaller than L1. The situation is
opposite for t1 < t < t2 where L1 has been reached and
the interaction assisted propagation of the center of mass
begins, on scales larger than L1. The increase of R(t) is
now much faster than the increase of ρ(t), and the ratio
R(t)/ρ(t) increases. L2 is reached at t = t2 where TIP
localization occurs.

5 Ballistic propagation and duality

For t ≤ t1 we find that the spreading of the center of mass
is almost ballistic:

R(t) ∼ v(U)tµ(U) with µ(U) ≈ 1,

and that the interaction reduces the increase of R(t). The
time evolution strongly depends on the initial condition.
When the two particles are injected on the same site at t =
0, with an energy of order U , the spreading of the center of
mass is almost suppressed by a too large interaction. This
is the dynamics associated to the molecular states |nn〉,
which do not decay when U becomes very large (Fig. 6).

On the contrary, injecting the two particles at two
neighboring sites (ρ0 = 2), one can see the dynamics asso-
ciated to the hard core boson states and the consequence
of the duality relation U ↔ 1/U between the free bosons
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Fig. 5. Single sample with L1 = 16, L = 1024 and U = 1. Up:
R(t)/ρ(t). Down: R(t), ρ(t) and ρ(t) for U = 0 and U = 1.

and the hard core bosons. Since the density of those states
exhibits a Van Hove singularity at E = 0 for U,W = 0, we
have also taken V0 = Vρ0 = 0. This optimizes the coupling
between ψ(t = 0) and the hard core spectrum. The dual-
ity shows up in the quantum motion. In Figure 6, when
ρ0 = 2,

(i) that R(t) increases almost linearly as a function of t
(i.e. that the motion is almost ballistic,

(ii) R(t) decreases with U (U < 2),
(iii) that R(t) is very similar when U = 0 and U = 15

(duality).

In Figure 7, the averages over the random potential of
R(t = 40) and R(t = 1000) are shown as a function of
the strength U of the interaction. The upper figure corre-
sponds to the ballistic regime where U defavors transport,
while the lower figure corresponds to the case where U has
started to favor transport. The two curves illustrate the
consequences of the duality between the free bosons and
the hard core bosons and the inversion of the role of U
around t1.
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Fig. 6. R(t) at small times for different values of the inter-
action. L1 = L = 200, average over 20 samples. Up: ρ0 = 0.
Down: ρ0 = 2.

6 Scaling in the ballistic regime

To define the characteristic time t1 separating the ballistic
and sub-diffusive regimes, one can use many criteria. For
instance, t1 can be defined

(i) as the lifetime ~/Γ1 of the free (hard core) boson
states, when U < Uc ≈ 2 (U > Uc);

(ii) as the time tR1 where the particles reach the one par-
ticle localisation length L1 when R(U, tR1 ) = R(U =
0, t =∞);

(iii) as the time tmin
1 where the minimum of R(t)/ρ(t) is

reached (see Fig. 5);
(iv) as the time scale ts1 allowing to map the curves

R(t)/ρ(t) onto a single scaling curve R(t)/ρ(t) =
fs(t/t

s
1). The existence of such a scaling and the L1

and U dependence of ts1 are shown in Figure 8.

We have checked that the definitions (iii) and (iv) are
compatible. For t < t1 the motion is essentially ballistic,
and we expect that t1(L1) ∝ L1, as for a clean system of
size L = L1 (definition (i)) where a term of order ±U/L2

1
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coupled ν1 ∝ L1 free boson states.

t1

L1
= f(U) ≈ 1− 0.3U.

The interesting feature of tmin
1 is that R ≈ ρ at this time,

as when U = 0. This time where there is an inversion of
the effect of the interaction should be related to the size
L where the TIP level curvature [3] does not depend on
U . According to reference [3], this size is of order (but not
exactly) L1.

7 Very slow delocalization and weak critical
chaos

After the ballistic propagation for t < t1, the spreading
of the center of mass measured by R(t) saturates without
interaction. This is due to one particle quantum interfer-
ences yielding one particle Anderson localization. When
U 6= 0, this saturation is suppressed, but the spreading
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Fig. 8. Up: tmin
1 (U) with L1 = 24, L = 256 and 200 samples.

The line is a linear fit: t1 = L1 − 8U . Middle: tmin
1 (L1) with

L ≈ 3L1, U = 1 and 50 samples. The line is a linear fit:
tmin
1 = 0.5L1. Down: rescaling R(t/ts1) with L1 = 24, U = 0.5

(pluses), U = 1 (squares), U = 1.5 (diamonds), U = 2 (full
triangles) and U = 1 L1 = 16 (triangles), L1 = 36 (stars),
L1 = 50 (crosses).

R(t) has now a so slow increase that a logarithmic scale
for the time t is appropriate.

Let us first consider the increase of the relative sepa-
ration ρ(t) between the two particles when interaction as-
sisted propagation begins. As recalled in the Section 3.1,
we expect a behavior given by

ρ(t) ≈ L1(1 + ln(Γ1t)),

which turns out to be in good agreement with the nu-
merical results. Plotting ρ(x) − ρ(t1) as a function of
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x = log(t/t1), one can check in Figure 9 the predicted
logarithmic behavior.

The evolution of the center of mass is on the contrary
not described by the (modified) diffusion law

R(t) ≈
√
D2(t)t,

but has a much slower motion. However, this slow inter-
action induced delocalization is not very surprising since:
(i) the hopping terms induced by the interaction between
the free boson states (or the hard core boson states) are
much smaller in one dimension than assumed in the ran-
dom matrix model used to derive the non linear σ model
of reference [8] (Sect. 3.1). The interaction matrix is not
Gaussian and the effective density of coupled free boson
states is significantly reduced (Sect. 3.3). Due to this mul-
tifractal perturbation, the lifetime of the free boson states
is much larger than for a more normal (Gaussian) inter-
action matrix, as checked in reference [1].

(ii) For L ≈ L1, the interaction can only drive weak
critical chaos (Sect. 3.4). For L ≥ L1, the spectrum be-
comes less rigid, with statistics intermediate between crit-
ical statistics and Poisson statistics. Indeed, for L ≥ L1,
the TIP spectrum becomes a superposition of many states
not reorganized by U and having uncorrelated fluctuations
(Poisson) and a small part of states having critical statis-
tics (weak critical chaos). With the chosen initial condi-
tion (two particles put close the one to the other at t = 0)
one can argue that we mainly probe the few states with
critical spectral statistics. Those critical statistics are as-
sociated with slow anomalous diffusion. Let us take one of
those billiards with critical statistics: a right triangle [4]
with smallest angle equal to π/5 and Dirichlet boundary
conditions. For a very long time, the classical trajectories
are stable, the system remains on the same KAM torus in
phase space, until the corner with angle 4π/5 is reached.
At this moment only, the trajectories can escape from the
original KAM torus and start to explore other parts of
the phase space. This suggests us a possible analogy be-
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Fig. 10. Slow delocalization of R(t): L1 = 16, L = 1024 and
U = 1.

tween a single particle in the triangle billiard and the two
particles in a disordered chain of size ≈ L1 with on site in-
teraction: each particle is trapped in the one particle phase
space between the collisions. Only after a collision, the fre-
quency of those collisions being very low and depending
on the strength of the random potential, the two particle
phase space starts to be explored. This may explain the
similarity with a single particle in the triangle. Critical
statistics are associated with very slow explorations of the
phase space, and hence of the real space. The fact that
the interaction can never drive full quantum chaos, but
only weak critical chaos, makes likely a very slow interac-
tion assisted propagation. If the motion was isotropic in
the plane (n1, n2), we should expect anomalous diffusion
(R2(t) ≈ tα) with α < 1, as observed for a single parti-
cle at the mobility edge in three dimensions, where the
spectral statistics are critical.

Since the motion is anisotropic in the plane (n1, n2),
we do not find simple anomalous diffusion, but a simple
log(t) behavior:

R(t) ∝ log(t), (7)

as shown in Figure 10 for L1 = 16 (see also Fig. 3 for
L1 = 36).

This logarithmic delocalization is not easy to explain,
but reminds us the classical problem of a random walk
in a percolating network. Without anisotropy, one gets
anomalous diffusion. When one introduces anisotropy in
the walk, it has been observed [13] that the dynamics is no
longer described by a power law R(t) ≈ tα, but by a log(t)
law. If we order the localized one particle states |α〉 by
the location nα of the center of their localization domain,
from one side of the chain to the other, the TIP model
in the free boson basis |αβ〉 is both anisotropic (larger
hopping along the center of mass direction than along the
other direction) and the hopping terms 〈αβ|Hint|γδ〉 have
a multifractal measure. One can then argue that the two
problems might be related, sharing the same log(t) spread-
ing of R(t).
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8 Conclusion

In summary, this study of the TIP quantum motion has
given some new insights on several aspects of the model.
There are two length scales L1 and L2, and two corre-
sponding time scales t1 and t2. For L < L1 (t < t1) the
interaction defavors the pair propagation and reduces the
level curvature. On the other hand, for L > L1 (t > t1),
there is a very slow interaction assisted pair propagation
and the level curvature increases as a function of U . Our
main result is that this delocalization is very slow, in qual-
itative agreement with the concepts of interaction induced
weak critical chaos and of multifractal hopping terms.
Moreover, the wavefunction |Ψn1,n2(t)| itself has multifrac-
tal features visible in Figure 1. With appropriate initial
conditions, one can observe the symmetry U ↔ A/U . In
conclusion, we underline that our results characterize sym-
metric states with purely on site interaction in strictly one
dimension. It will be interesting to study if they remain
valid for longer range interactions, or in a quasi-one di-
mensional limit, or if the behavior predicted from the σ
model approach of reference [8] becomes valid.
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